翻訳と辞書 |
Non-Archimedean ordered field : ウィキペディア英語版 | Non-Archimedean ordered field In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients with a suitable order. ==Definition== The Archimedean property is a property of certain ordered fields such as the rational numbers or the real numbers, stating that every two elements are within an integer multiple of each other. If a field contains two positive elements for which this is not true, then must be an infinitesimal, greater than zero but smaller than any integer unit fraction. Therefore, the negation of the Archimedean property is equivalent to the existence of infinitesimals.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Non-Archimedean ordered field」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|